

IntelliSub 2013 Frankfurt 26./27.11.2013

Implementation of IEC 61850

Christoph Brunner Switzerland

it4power

Implementation of IEC 61850

... working towards multi-vendor interoperability through the costeffective adoption of Edition 2 of IEC 61850 and determining next steps for full standardization

Edition 2 – selected

new features and how they improve IEC 61850

Interoperability – what are the issues?

Next steps -

integration of Power Generation including DER and IEC 61850 beyond the substation

IEC 61850 – where are we?

First Edition published 2003 – 2005

- Thousands of substations around the world are built with IEC 61850
- Concept is used in other domains for power generation
- Scope has been extended beyond the substation

Introducing Redundant Ports in IEDs

Parallel Redundancy Protocol (PRP)

CB 2013-11-22

Introducing Redundant Ports in IEDs

High Availability Seamless Ring (HSR)

Monitoring GOOSE subscription

LGOS class			
DO	CDC	Explanation	
LNName		The name shall be composed of the class name, the LN-Prefix and LN-Instance-ID according to IEC 61850-7-2, Clause 22.	
Data objects			
Status information			
NdsCom	SPS	Subscription needs commissioning	0
St	SPS	Status of the subscription (True = active, False=not active)	Μ
SimSt	SPS	Status showing that really Sim messages are received and accepted	0
LastStNum	INS	Last state number received	0
ConfRevNum	INS	Expected configuration revision number	0
Settings			
GoCBRef	ORG	Reference to the subscribed GOOSE control block	0

one instance per subscribed GOOSE

Control Hierarchies

it4power

Tele control

- Loc: Control behavior of LN; based on LocKey and MltLev
- LocSta: control behavior at station level (controllable object!)
- LocKey: Status of a key to determine control behavior
- If the above DO are at LLN0 they are valid for complete LD
- LLN0.MltLev: control on levels below the allowed is possible

System and IED tool responsibilities

IED properties

Functionality based data model (LNs, optional data)

Communication capability

IED Tool

Preconfigured functional parameters, CF attributes

Communication behavior (controls, data sets)

System Tool or Online

Clarification - icd, iid and cid

Testing support in IEC 61850

Diagnostics support

- Service tracking monitor communication services
- Monitor device behavior related to communication and system functions
- Functional testing
 - Equipment isolation
 - Simulation of GOOSE and Sampled Value messages
 - Simulation of signals (inputs)

Support for isolation and test

Testing an IED – Mod "on"

Testing an IED – Mod "test"

Mirroring control information

Simulation of messages

Isolation and test

Interoperability – the grey areas

From IEC 61850-2

"ability of two or more **IEDs** from the same vendor, or different vendors, to **exchange information** and **use that information** for correct execution of specified functions"

Interoperability and IEC 61850

IEC 61850 has three core components

- Information exchange ACSI and mappings on communication protocols
- Application modeling Logical nodes
- Engineering Configuration Language
- Interoperability has the same levels
 - Ability to exchange information is provided by ACSI – this is achieved today
 - Ability to use the information is supported by the application models – *improvements are possible*
 - Engineering interoperability today is *limited*

Options provided by the standard

- Declaration of capabilities of an IED in SCL has been extended with Ed 2; PIXIT reduced
 - Example: limitations for dataset definition (e.g. only selection of individual data attributes) not allowed anymore
- Development of profiles is in discussion
 - Basic application profiles
 - User profiles (e.g. ENTSO-E)
- Profiles limit the options by defining a required subset

Engineering flexibility of devices

IED properties can be

- Fix: defined by IED implementation
- Conf: defined through configuration file (SCL); initialized at startup
- Dyn: dynamically changed through client / server services or on frontpanel

```
<Services>

        <GetDirectory />
        <GetDataObjectDefinition />
        <DataObjectDirectory />
        <GetDataSetValue />
        <ReadWrite />
        <ConfReportControl max="4" />
        <GetCBValues />
        <ReportSettings rptID="Dyn" datSet="Fix" optFields="Dyn" bufTime="Dyn" trgOps="Dyn" intgPd="Dyn" cbName="Fix" />
```


Signal flow in IEC 61850 - InRef

GOOSE – wires become virtualized

Signal flow

- engineered in SCL (ExtRef)
- described in online data model (InRef / Ed2)

Options provided by the standard

Signal flow engineering in SCL

 Various elements in SCL support engineering of GOOSE subscriptions - however, they are all optional

Example: ExtRef

- How can an IED declare, to which LNs how many inputs are allowed?
- Which LNs do accept inputs (ExtRef)?
- Development of a guideline for recommendations for data flow configuration by the UCA IEC 61850 users group is under discussion

Tool interoperability

- Interoperability testing of tools was a major focus at the IOP 2013
- File exchange between tools is typically possible
- But due to various options, a system tool needs to know many details of a particular IED tool
 - Example: is an ExtRef specifying a data attribute or a data object?
 - Example: What shall the communication parameters of unused, but preconfigured GOOSE messages be?

Next steps – Integrating DER

Documents from WG17 about DER

- IEC 61850-7-420 Communications Systems for Distributed Energy Resources (DER)
- IEC 61850-90-6: Using IEC 61850 for distribution automation
- IEC 61850-90-7: IEC 61850 object models for inverter based applications
- IEC 61850-90-8: IEC 61850 object models for electrical vehicles
- IEC 61850-90-9: IEC 61850 object models for electrical energy storage systems
- IEC 61850-90-10: Modeling of schedules in IEC 61850

Technical Report IEC 61850-90-15

Scope

- Describe the concepts to integrate DER systems into the grid using IEC 61850
 - Concept of a hierarchical DER system which comprises a **DER management system**, **DER systems** and various types of **DER units**
 - Functional requirements of DER grid integration
 - Setting up an information model of the DER system based on IEC 61850

DER Grid Integration - Definition

DER Grid Integration means that for reasons of **security of supply** and **security of the power system**, DER system should provide on request **ancillary services** that are in conventional power systems provided by bulk power generation systems.

Integration of DER

End to end communication

Communication between substations – IEC 61850-90-1

Interaction between stakeholders

